Catalytic conversion of ethanol to butadiene over MgO-SiO₂ catalysts: effects of texture, structural heterogeneity and metal-oxide promoters on the catalytic activity

Róbert Barthos, József Valyon, Dhanapati Deka, Blanka Szabó

Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences Budapest, Hungary

28 November, 2023

New scenario for a sustainable chemical production based on the reuse of CO_2 and of biomass

ChemSusChem2014,7, 1274 - 1282.

Pathways towards renewable ethanol

Biofuel Bioprod. Biorefin. 2020, 14, 845–878.

Historical review I.

Historical review II.

Ethanol to butadiene as an alternative technology

Yield of C₄ fraction from different feedstocks

HIGH BUTADIENE OUTPUT

The BioButterfy Plant

Chem Asian J. 2020, 15, 4199–4214

The advantage of ethanol over shale gas

The BioButterfly project

Michelin, IFP Energies nouvelles and Axens constructed an industrial prototype for mass production between 20 and 30 tonnes/year.

This is the last phase before industrial implementation of the process (100,000 tonnes/year)

Heterogeneous catalysis and surface reactions

Potential energy profile of heterogeneous catalytic reactions

Schematics of the possible mechanisms of the heterogeneous reactions

The brown and white balls represent the two reactants

Springer Handbook of Surface Science pp 905–928

Definition of acid and base

Definition by Brønsted: an acid (AH) donates a proton and a base (B⁻) accepts a proton.

$AH + B^- \longrightarrow A^- + BH$

Definition by Lewis: a base (:B) donates a lone pair and an acid (A) accepts a lone pair.

 $A + : B \longrightarrow A : B$

Coopirative action of acidic and basic sites

Concerted mechanism in 1-butanol dehydration over MgO

Reaction mechanism of ethanol to butadiene transformation

- Fixed-bed, continuous-flow reactor at atmospheric pressure
- On-line GC, two FID (PLOT-Fused Silica Al₂O₃/KCl hydrocarbons; HP-PLOT-U - oxygenates) and TCD detector
- The GC was calibrated for reactant and all products separately
- Selectivities were calculated on carbon basis (number of carbon atoms in selected product divided by the summarized number of carbon atoms in all product molecules)
- Identical conversion levels were achieved over the different catalysts by changing the weight hourly space velocity (WHSV) of the ethanol

System for catalytic test reactions

On-line GC

The two-column layout

The flow-through quartz reactor (I = 30 mm, $\otimes = 10 \text{ mm}$)

The role of acidic and basic sites in ethanol-butadiene reaction

• Catalysts:

Al₂O₃, Titania, Hydroxyapatite, Zirconia, β-zeolite, MgO, SiO₂, MCM-48, TUD-1, **MgO-SiO₂**

1 g catalyst, 0.5 g ethanol/(g_{cat}*h), 30 ml/perc (4.4 ml/min ethanol + 25.6 ml/min He)

Tested catalysts in the ethanol-butadiene reaction

I. Stage: talc like catalysts

- **1.** Natural talc ($Mg_3Si_4O_{10}(OH)_2$)
- 2. Coprecipitated sample
- 3. Wet-kneaded sample
 - 1 wt% Ga_2O_3 , In_2O_3 and ZnO

Blanka Szabó, Gyula Novodárszki, Zoltán Pászti, Attila Domján, József Valyon, Jenő Hancsók, Róbert Barthos: MgO–SiO₂ Catalysts for the ethanol to butadiene reaction: The effect of Lewis acid promoters, ChemCatChem, 12 (2020) 5686–5696

II. Stage: high SSA-SiO₂-MgO catalysts group

- 1. Wet-kneaded sample: 30 % MgO-SBA-15 from Mg(OH)₂
- 2. Incorporated sample: 30 % MgO-SBA-15 from Mg(OMet)₂
 - 2,5,10 wt% ln₂O_{3,}

Blanka Szabó, Gyula Novodárszkia, Zoltán May, József Valyon, Jenő Hancsók, Róbert Barthos: Conversion of ethanol to butadiene over mesoporous In₂O₃ promoted MgO-SiO₂ catalysts, Molecular Catalysis, 491 (2020) 110984

III. Stage: high SSA MgO-SiO₂ catalysts group

- 1. Wet-kneaded family
- Low SSA MgO-SiO₂
- High SSA MgO-SiO₂

- 2. Silica-coated family
- Low SSA MgO-SiO₂
- High SSA MgO-SiO₂

3. Internal hydrolyzed family

- Low SSA MgO-SiO₂
- High SSA MgO-SiO₂

Journal of Molecular Structure 1259 (2022) 132764 and React. Chem. Eng., 8 (2023) 718

	Characterisation		Ва	asic properties	Acidic properties		
Sample ID	Si/Mg ^a	SSA ^b m²/g	CO₂ TPD μmol/g	CDCl ₃ Weak sites RT, 2250 cm ⁻¹	-FT-IR Strong sites RT, 2235 cm ⁻¹	NH₃ TPD μmol/g	Pyridine FT-IR 200°C, 1448 cm ⁻¹
Talc	1.46	9.1	7.7	0.07	-	17.12	-
СР	1.44	207.5	10.5	0.09	-	412.01	0.15
WK	1.61	249.6	94.5	0.15	0.74	461.11	0.35

a: ICP-OES anal. Theoretical Si/Mg ratio 1.54 b: BET method

	Characterisation		Ba	sic properties	Acidic properties		
Sample ID	Si/Mg ^a	SSA ^b m²/g	CO₂ TPD μmol/g	CDCl ₃ Weak sites RT, 2250 cm ⁻¹	-FT-IR Strong sites RT, 2235 cm ⁻¹	NH₃ TPD μmol/g	Pyridine FT-IR 200°C, 1448 cm ⁻¹
Talc	1.46	9.1	7.7	0.07	-	17.12	-
СР	1.44	207.5	10.5	0.09	-	412.01	0.15
WK	1.61	249.6	94.5	0.15	0.74	461.11	0.35

a: ICP-OES anal. Theoretical Si/Mg ratio 1.54 b: BET methode

	Characterisation		Ва	asic properties	Acidic properties		
Sample ID	Si/Mg ^a	SSA ^b m²/g	CO₂ TPD μmol/g	CDCl ₃ Weak sites RT, 2250 cm ⁻¹	-FT-IR Strong sites RT, 2235 cm ⁻¹	NH₃ TPD μmol/g	Pyridine FT-IR 200°C, 1448 cm ⁻¹
Talc	1.46	9.1	7.7	0.07	-	17.12	-
СР	1.44	207.5	10.5	0.09	-	412.01	0.15
WK	1.61	249.6	94.5	0.15	0.74	461.11	0.35

a: ICP-OES anal. Theoretical Si/Mg ratio 1.54 b: BET methode

	Characterisation		Ba	asic properties	Acidic properties		
Sample ID	Si/Mg ^a	SSA ^b m²/g	CO₂ TPD μmol/g	CDCl ₃ Weak sites RT, 2250 cm ⁻¹	-FT-IR Strong sites RT, 2235 cm ⁻¹	NH₃ TPD μmol/g	Pyridine FT-IR 200°C, 1448 cm ⁻¹
Talc	1.46	9.1	7.7	0.07	-	17.12	-
СР	1.44	207.5	10.5	0.09	-	412.01	0.15
WK	1.61	249.6	94.5	0.15	0.74	461.11	0.35

a: ICP-OES anal. Theoretical Si/Mg ratio 1.54 b: BET methode

XRD patterns of the catalysts

NMR results

ETB conversion over talc like catalysts

1 g catalyst, 0.5 g ethanol/(g_{cat}*h), 30 ml/perc (4.4 ml/min ethanol + 25.6 ml/min He)

Conclusions

Best catalytic activity: **WK sample**.

- High specific surface area (250 m²/g)
- Ideal Lewis-acidity
- Stronger basic sites → separeted MgO phase → efective C-C coupling

The effect of metal oxides on the acid-base properties

1 wt% of ZnO/ In₂O₃ /Ga₂O₃-WK

Effect of the metal-oxides

1 g catalyst, 0.5 g ethanol/(g_{cat}*h), 30 ml/perc (4.4 ml/min ethanol + 25.6 ml/min He)

Conclusions

- Ury similar acidity properties.
- Very similar basicity properties.

The activity of the catalysts showed correlation with the chemical hardness of the metal-ions. $Zn^{2+}(0.45) < In^{3+}(0.53) < Ga^{3+}(0.68)^*$

*Progress in Solid State Chemistry 39 (2011) 70

High SSA-SiO₂-MgO catalysts group

Wet-kneaded sample=WKSBA

SBA-15

- ✓ Mesoporous SiO₂
- ✓ SSA: ~ 700 m²/g
- ✓ Hexagonal pore system
- ✓ Thermal stability
- ✓ Hydrothermal stability

Incorporated sample=OPMET

Pluronic 123: surfactant Pluronic 123Poly(ethylene glycol)-block-poly(propylene glycol) **TEOS**: Tetraethyl orthosilicate

2. One-pot synthesis= OPMET

High SSA-SiO₂-MgO catalysts group

Wet-kneaded sample=WKSBA

SBA-15

- ✓ Mesoporous SiO₂
- ✓ SSA: ~ 700 m²/g
- ✓ Hexagonal pore system
- ✓ Thermal stability
- ✓ Hydrothermal stability

Incorporated sample=OPMET

Pluronic 123: surfactant Pluronic 123Poly(ethylene glycol)-block-poly(propylene glycol) **TEOS:** Tetraethyl orthosilicate

2. One-pot synthesis = In₂O₃/OPMET

Effect of In_2O_3 on the distribution of the reaction products at 350°C over high SSA-SiO₂-MgO

High-SSA MgO-SiO₂ catalysts

Catalyst groups

I. Internal hydrolyzed

- Low SSA MgO-SiO₂
- High SSA MgO-SiO₂

II. Wet-kneaded

- Low SSA MgO-SiO₂
- High SSA MgO-SiO₂

II. Silica-coated

- Low SSA MgO-SiO₂
- High SSA MgO-SiO₂

Preparation of the catalysts

Effect of MgO morphology on catalytic activity

- Over LSSA MgO dehydrogenation and dehydration dominates
- Over HSSA MgO coupling is the main reaction

Terrace sites: O_{5c} , Mg_{5c} Edge sites: O_{4c} , Mg_{4c} Corner sites: O_{3c} , Mg_{3c}

Effect of the high SSA-MgO on the product distribution of the reaction products at 350 and 400 °C

Effect of MgO and SiO₂ texture on product selectivity

Catalytic test reactions

 Mg_L , Mg_H – low and high SSA MgO, Si_L , Si_H low and high SSA SiO_2

Reaction of ethanol and intermediates over wet kneaded MgO-SiO₂ 2:1

Crotonaldehyde: due to low hydrogen content very fast deactivation, however butanal, butanol and crotly alcohol also can be detected (hydrogen is evolved in the process of aromatization) **Butanal:** aldol condensation and aromatization

Reaction of ethanol/intermediate mixtures over MgO-SiO₂ 2:1

Temperature, °C

- Ethlyene and diethyl-ether selectivites are suppressed
 - Acetaldehyde enhances butadiene selectivities.
- Higher butanol and crotylalcohol selectivities can be observed when crotonaldehyde is cofeeded.
- From crotylalcohol butanol is formed, especially at lower temperatures.
 - From butanal butanol is the main product

Reaction network

Conversion of the intermediates over MgO-SiO₂ catalysts

1 g catalyst, 0.125 g crotyl alcohol/(g_{cat}*h), 30 ml/min (6.4 ml/min crotyl alcohol + 23.6 ml/min He)

Questions about the mechanism

- The probability of a bimolecular reaction is low at low conversion levels and low acetaldehyde concentrations.
- The facile conversion of ethanol/crotonaldehyde mixture to butadiene does not evidence that the reaction of pure ethanol proceeds via crotonaldehyde intermediate.
- If crotonaldehyde is an intermediate, it should appear in the product mixture, especially at low space times.
- The 3-hydroxybutanal, which is very unstable at room temperature must be converted to crotonaldehyde with high selectivity.
- Under certain conditions, in addition to butanol, hexanol and 2-ethyl-1butanol (and higher homologues) are also formed in the reaction, and the appearance of these products is difficult to interpret through the aldol condensation mechanism.

Reaction network

SUMMARY

- Using new methods of catalyst synthesis (In₂O₃/WK, In₂O₃/OPMET, WKH, SCH, IHH) the butadiene yield could be increased.
- Addition of metal-oxides significantly increased the yield of butadiene, which was interpreted as accelerating the dehydrogenation reaction of ethanol.
- The metal oxide additive changed the acidity and basicity of the catalysts to the same level, however their catalyst activity were different, which was explained by the different chemical hardness of the oxides.
- The sample impregnated by metal oxide retaines the original properties of the support (In₂O₃/OPMET)
- The catalysts made of high surface area MgO gave significantly higher BD yields than the samples containing low surface area MgO.
- The higher BD yield obtained on samples made from mesoporous MgO are explained by the more favorable interaction of the catalyst components: the higher amount of MgO on the surface facilitates the coupling reaction, while the acidic sites are required for adequate dehydration activity.
- Based on our experiences we suggested the most likely reaction pathway (acetaldehyde intermediate links to ethanol).

Thank you for you kind attention!

Ministry of Innovation and Technology National Research, Development and Innovation Fund within the framework of the 2019-2.1.13-TÉT_IN program (Project No.: 2019-2.1.13-TÉT_IN-2020-00043)

Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences Budapest, Hungary