Project meeting "Joint chemical laboratory for the service of bioeconomy in the Slovak-Hungarian border region"

Bioethanol Production from Renewable Raw Materials

Interreg, SKHU/1902/4.1/001/Bioeconomy

Slovak University of Technology in Bratislava

28th September, 2022

B. Horváth^a, R. Barthos^b, A. Kaszonyi^a

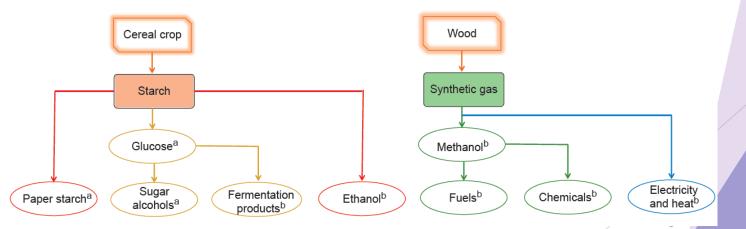
 ^a Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Bratislava, Slovakia
 ^b Eötvös Loránd Research Network, Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Budapest, Hungary

Biomass and its uses

In most developed countries, governments stimulate the use of renewable energies and resources with following major goals:

- ► (*i*) to secure access to energy,
- ▶ (*ii*) to mitigate climate changes,
- ▶ (*iii*) to develop/maintain agricultural activities and
- ▶ (*iv*) to ensure food safety.

During the last decades of the 20th century, there was an enormous interest in the production and usage of **liquid biofuels** (biodiesel or bioethanol) as promising substitutes for fossil fuels.

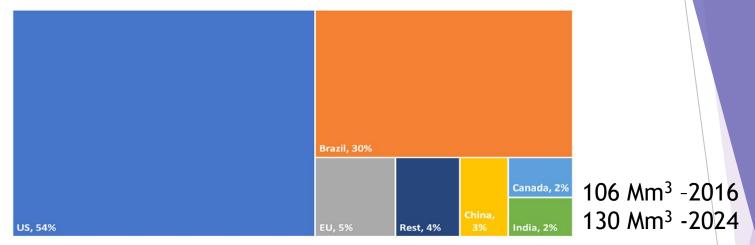

Bioethanol is typically produced via **microbial fermentation** of fermentable sugars, such as glucose, to ethanol.

Bottom-up approach:

An example of bottom-up biorefinery is the wheat and corn starch biorefinery that starts as a simple starch factory -Lestrem, France, USA (Decatur, Illinois), Austria (Lenzing) and Norway (Sarpsborg).

Top-down approach:

The new top-down approach is a highly integrated system established for the use of various biomass fractions and generation of different products for the market (Green Biorefinery Upper Austria – green grass juice, utilization of N, P, *Wautersia eutropha*)


a-traditional, b-new products

Sources of bioethanol

In Europe, in 2019 just 4.3% of the total bioethanol produced came from **nonedible** lignocellulosic biomass. In 2019 the European renewable ethanol installed production capacity was 9.9 Mm³, while the ethanol imports in Europe reached 1.3 Mm³.

- > 48.6% of the renewable ethanol produced in Europe was from corn
- > 21.1% wheat
- ▷ 19.3% sugar
- ➢ 6.7% cereals, crops, starch
- > 4.3% lignocellulosic and others
 - The current global economy is based on linear economy, which consists on production-consumption-dispose.
 - Circular economy would consist on a closed loop of productionconsumption-recovery-production.
 - It is estimated that just 9.1% of current global economy is circular (2020).

Ethanol production and cost

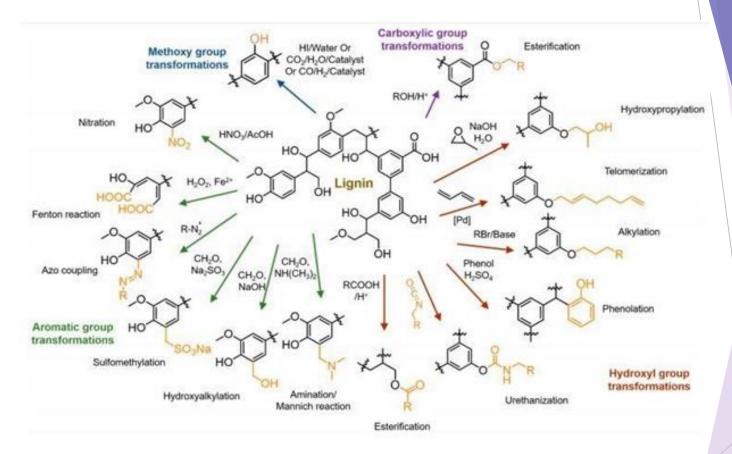
In 2019, projected portion of US in 2024: 42%

Nearly 40% from sugar cane and beet Nearly 60% from starch-containing

```
Sugar cane, Brasil - 0.20-0.30 USD/l
Sugar beet, corn, EU, US - 0.30-0.53 USD/l
Wheat, sweet potato, China - 0.28-0.46 USD/l
Simple sugars, India - 0.44 USD/l
Lignocellulose, average - 0.80-1.20 USD/l
Gasoline, refining cost - 0.10-0.18 USD/l (2018)
```

Raw materials containing sugar

- > 2/3 of the world sugar production are from sugar cane
- 1/3 from sugar beet
- Sugar cane semi-perennial, less agricultural operation
- Molasses: 50-60 % sugar (starch and citrus molasses 40-45%)
- Whey as a by-product in cheesemaking (4.9% lactose)

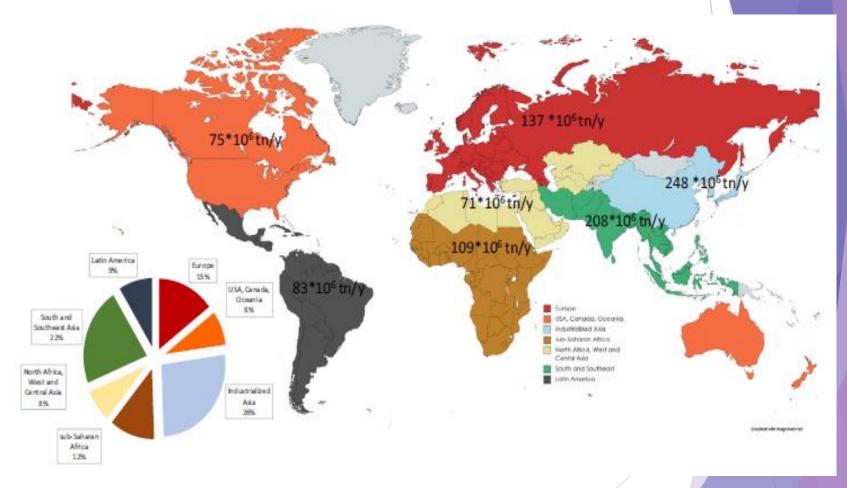

Raw materials containing starch

- USA represents 80% of the worldwide starch market (95% of bioethanol from corn)
- Hydrolysis by amylase, glucoamylase
- Bacillus licheniformis and modified produces amylases
- Max. efficiency 51% by mass, in practice 40-48%
- Microalgae convert CO₂ to lipids and sacharides

Raw materials containing lignocellulose

- Renewables non-competitive with food crops
- More evenly distributed, cheaper than sugars, arduous pre-processing
- Crop residues (straws, stovers), wood, cellulose wastes (paper), grasses, municipal waste
- Pretreatment steps necessary:
 - Alkaline (NaOH etc.)
 - ► Acids (H₃PO4, H₂SO₄ etc.)
 - Organosolv (EtOH, glycerol at cca. 200 °C)
 - Ionic liquids
 - Biochemical (Ceriporiosis subvermispora, 18 days)
- Formation of toxic compounds in harsh conditions (furans, phenolic compounds, ketones) can be subsequently removed:
 - By extraction
 - Adsorption
 - Enzymatically
 - By using resistant strains

Utilization of lignin


Souza RE, Gomes FJB, Brito EO, et al. A review on lignin sources and uses. J Appl Biotechnol Bioeng. 2020;7(3):100-105.

The biochemical transformations of lignine are of great interest. Inhibitive effects: formation of formaldehyde from -OMe groups

Reported pretreatment methods

Feedstock	Pretreatment/ hydrolysis	Microorganism	γ(ethanol) g/L	<u> </u>	$\frac{P_{\rm max}}{\rm g/(L\cdot h)}$
Sugar cane bagasse	Diluted acid (H ₂ SO ₄) followed by alkaline delignification (NaOH), cellulase complex obtained from <i>Trichoderma reesei</i> (MULTIFECT [®])	Recombinant Saccharomyces cerevisiae containing the β- glucosidase gene from Humicola grisea	51.7	_	0.94
Bagasse	Acid (H ₃ PO ₄), Accellerase [®] 1500 enzyme	Z. mobilis ATCC 29191 immobilized in Ca-alginate (CA) and polyvinyl alcohol (PVA) gel beads	6.24 5.52 5.53 5.44	79.09 69.96 70.09 68.95	3.04 2.37 1.31 1.27
Eucalyptus globulus wood	Organosolv (50 % EtOH, 200 °C, 45 min), cellulase (Celluclast) and β-glucosidase (Novozym 188)	S. cerevisiae IR2T9-a	~42	-	-
Rice straw	Alkali (NaOH), Accellerase [®] 1500 enzyme	S. cerevisiae, Candida tropicalis, S. stipitis	28.6	86	-
Corn stover	AFEX commercial enzymes mixture (Ctec 2, Htec 2 and Multifect pectinase)	Genetically engineered <i>S. cerevisiae</i> Y35	45.5 51.3	-	0.87 0.76
Cellulosic material, β-glucan	-	Recombinant Kluyveromyces marxianus K1	4.24	92.2	0.55
Corn stover	AFEX	Clostridium phytofermentans (ATCC 700394)	7.0	-	-

Ethanol from food waste Food waste production

Nutritional characteristics of organic fraction of municipal solid waste. All values are in dry basis.

	Country	рН	Moisture	Ash	Fat & oil	Protein	Raw fiber	Lignin	Cellulose	Hemi- cellulose	Starch	Free sugars	Total carbohydrates	References
America	USA		57.0-81.1	7.7	4.7-17.4	10.9–24.6	10.5-35.5				6.7-25.9			(Fung, Urriola, Baker, & Shurson, 2019)
Asia	Singapore	4.0-4.5		2.9	6.2-14.6	8.6-10.3			5.9		60.3-62.7		76.8	(Ma, Cai, & Liu, 2017; Uçkun Kiran & Liu, 2015)
	China	5.6	82.8		18.1	15.6			2.3		46.1	9.0		(Ma, Wang, Zhang, Xu, & Zou, 2008)
	India		85.0	11.5	8.5	6.8	33.5	8.5	15.5	9.5			\frown	(Rao & Singh, 2004)
	Turkey		64.4	5.1	24.7	12.6							60.0	(Uncu & Cekmecelioglu, 2011)
Europe	Denmark	5.3	64.4–72.0	14.4–20.0	8.1–16.6	8.1–16.6	3.5–31.5	15.9	4.3	11.3	11.7-17.0	4.9-9.0		(Davidsson, Gruvberger, Christensen, Hansen, & Jansen, 2007; La Cour Jansen, Spliid, Hansen, Svärd, & Christensen, 2004; López, Soliva, Martínez-Farré, Fernández, & Huerta-Pujol, 2010)

Nutritional characteristics of organic fraction of municipal solid waste. All values are in dry basis.

France	5.3	78.7	17.7			34.4	2.6	9.9	15.8				(Adhikari, Trémier, Barrington, & Martinez, 2013)
Italy	4.4	69.5-75.8	8.0-8.4	5.6-19.0	13.4–16.3	20.7-21.1	5.0-6.5	10.3-11.0	3.9-5.1	16.0	20.2	32.2-57.0	(Alibardi & Cossu, 2015; Lavagnolo, Girotto, Rafieenia, Danieli, & Alibardi, 2018)
Spain		66.9	18.2		16.3	12.4							(García, Esteban, Márquez, & Ramos, 2005; López et al., 2010)
UK	4.7-5.7	71.4–76.3	5.8-8.7	13.5-21.4	16.0-25.8		1.8	5.5	4.2			49.8-56.3	(Esteves & Devlin, 2010; Ramzan, Naveed, Latif, & Saleemi, 2010; Zhang et al., 2007)
Greece	5.1-5.6	75.7–78.9	2.2-18.5	9.2-11.9	10.0-11.0		2.2-6.3	3.2-18.3	3.0-11.1	16.0-26.0	10.0–33.8	43.0-50.3	(di Bitonto et al., 2018; Matsakas, Kekos, Loizidou, & Christakopoulos, 2014; Ntaikou, Menis, Alexandropoulou, Antonopoulou, & Lyberatos, 2018)
											12		

Operational conditions

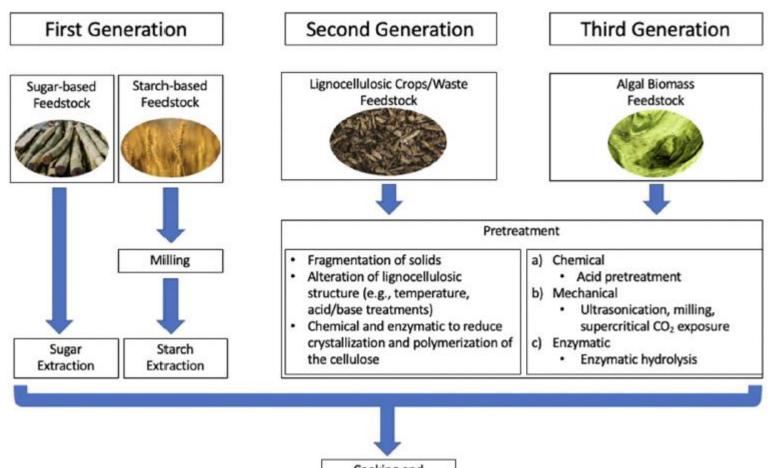
Saccharification	Loading	Fermentation		Ethanol yield		
	(% TS)		g/L	g/g Substrate	% of the theoretical yield	References
a-amylase (<i>Aspergillus oryzae</i>) 120 U/g, 95°C, 1 h Amyloglucosidase (<i>Aspergillus</i> <i>niger</i>) 120 U/g, 55°C, 6 h Cellulase (<i>Trichoderma viride</i>) 8 FPU/g & β-glucosidase (almonds), 50 U/g, 55°C, 6 h	1	Separate Hydrolysis and Fermentation (SHF), <i>Saccharomyces cerevisiae</i> , 59 h	32.2	0.16	78.70	(Uncu & Cekmecelioglu, 2011)
a-amylase 10 U/g & glucoamylase 142.2 U/g, 55°C, 2.48 h	20	SHF, <i>Saccharomyces cerevisiae</i> H058, 60 h	75.9-81.5		90.4–97	(Yan et al., 2011)
a-amylase, 10 U/g & glucoamylase 140 U/g, 55°C, 2.5 h	15	Immobilized cell Fermentation (ICF), Calcium-alginate containing immobilized <i>Saccharomyces</i> <i>cerevisiae</i> H058	70		76.48	(Yan, Wang, Zhai, & Yao, 2011)
Glucoamylase (<i>A. niger</i>) 85 U/mL, 60°C, 10 h	8	SHF, locally isolated Saccharomyces cerevisiae, Candida parasilopsis, and Lachancea fermentati		0.45-0.5	82.06-98.19	(Hafid, Abdul Rahman, Md Shah, Samsu Baharudin, & Zakaria, 2016)
Spyrizyme Plus FG 2 U/g & Viscozyme L 20 U/g, 50°C, 3 h	15	SHF, Saccharomyces cerevisiae KCTC7107	29.1	0.23	76.00	(Moon et al., 2009)

Total solids

Operational conditions

Pretreatment	Saccharification	Loading	Fermentation		Ethanol yie		
		(% TS)		g/L	g/g substrate	% of the theoretical yield	References
Hydrothermal	Celluclast 1.5 L/Novozyme 188 (5:1) 10 FPU/g, 30°C, 48 h	20	SSF, Saccharomyces cerevisiae		0.1078	64.75	(Alamanou, Malamis, Mamma, & Kekos, 2015)
Hydrothermal	Glucoamylase 100 U/g wet & protease 100 U/g, 30°C, 48 h	15	SSF, acid tolerant <i>Zymomonas</i> mobilis GZNS1	46-52			(Ma, Wang, Qian, Gong, & Zhang, 2009)
Hydrothermal, 1% H ₂ SO ₄	Celluclast1.5 L/Novozyme 188 (5:1) 7–10 FPU/g, 30°C–50°C, 48 h	20-40	SSF, <i>Saccharomyces</i> <i>cerevisiae</i> , 24 h	42.66	0.107-0.116	64.07-69.44	(Alamanou et al., 2015)
Hydrothermal, 1% and 4% acid	a-amylase (<i>Aspergillus oryzae</i>) 120 U/g, 95°C, 1 h Amyloglucosidase (<i>A. niger</i>) 120 U/g, 55°C, 6 h Cellulase (<i>Trichoderma viride</i>) 8 FPU/g & β-glucosidase (almonds), 50 U/g, 55°C, 6 h	1	SHF, <i>Saccharomyces</i> <i>cerevisiae</i> , 48 h	23.3	0.36	69.00	(Cekmecelioglu & Uncu, 2013; Uncu & Cekmecelioglu, 2011)

Composition of agricultural residues


Agricultural residues	Cellulose	Hemicellulose	Lignin	Crude protein	Ash
Wheat straw	30.2-55.6	4.2-30.0	7.9–27.5	4.4	4-4.7
Corn straw	31.8-49.3	19.6-33.4	7.0-17.6		4.2-12.5
Corn stalks	10.8-39.6	10.7-60.3	2.0-27.9		2.0-8.5
Corn stover	27.0-39.6	15.7-32.5	4.6-18.4	0.7-9.3	4.1-7.2
Corn cobs	33.7-44.0	31.0-49.6	6.1-18.0	4.3	2.9-3.2
Rice straw	29.2-38.9	18.7-25.9	13.3–22.1		11.3–17.3
Sugarcane straw	32.4-33.6	21.7-25.5	31.8-36.3		5.7-6.0
Soybean straw	25.0-74.0	10.3-56.0	5.0-21.6		0-5.2
Barley straw	33.8-44.0	16.9-33.0	13.8-20.7		2.5-3.9
Cotton stalks	14.4-43.7	12.5-23.9	21.5-29.4		4.8

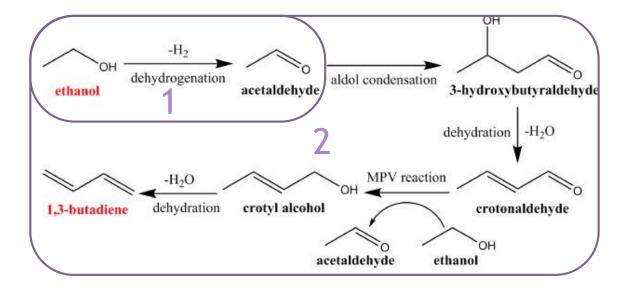
Ethanol from agricultural residues

Feedstock	Pretreatment	Saccharification	Loading	Fermentation		Ethanol yield	I	References
			(% TS)		g/L	g/g feedstock	% theoretical yield	
Wheat straw	Hydrothermal, 195°C, 12 min, 1:5 solid to liquid ratio (SLR)	Celluclast1.5 L/ Novozyme 188 (5:1) 5 FPU/g, 96 h, 50°C	30	<i>Saccharomyces</i> <i>cerevisiae</i> (0.33 g/kg), 32°C, 72 h	8.7	0.03	10.3	(Jørgensen, 2009)
	Wet explosion, H_2O_2 to 3% O_2 , 170°C	Celluclast, 10 FPU/g cel., 50°C, 2-4d	33	Thermoanaerobacter BG1L1, 70°C, 2d, 20%–80% TS	4.60-14.42	0.39-0.42	76–83	(Georgieva, Coelho, Campos, Robalo, & Stateva, 2018)
	Steam explosion, 220°C, 2.5 min	Cellulase 15 FPU/g cel, β-glucosidase 15 IU/g cel., 50°C, 8 h	14	SSF, <i>Kluyveromyces</i> <i>marxianus</i> CECT 10875, 42°C, 72 h	30.2	0.22	94	(Tomás-Pejó et al., 2009)
	2.15% H ₂ O ₂ , 35°C, 24 h, 250 rpm	Celluclast, Novozyme 188, Viscostar, 4 mL/ 100 g, 45°C, 120 h		SHF, <i>Escherichia coli</i> strain FBR5, 37°C, 48 h	18.9	0.29	73	(Saha & Cotta, 2006)
	Shredding & milling, 1.85% H ₂ SO ₄ , 90°C, 18 h, 1:20 SLR, overliming with Ca(OH) ₂	No		<i>Pichia stipitis</i> NRRL Y- 7124, 28°C, 120 h	12.9–19.1	0.36-0.41	58.9-87.2	(Nigam, 2001)

Municipal waste can be as valuable source as agricultural residues

Review of potential sources

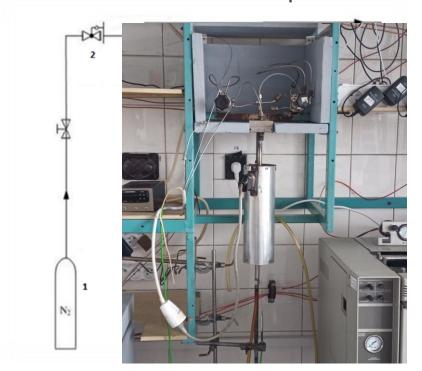
Cooking and Enzymatic Hydrolysis

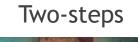

Bioethanol yields

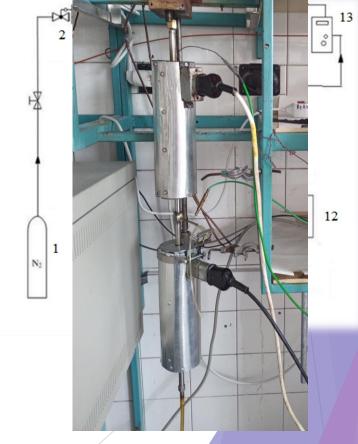
Bioethanol Generation	Biomass Source	Ethanol Yield (L/t)
First	Sugar beet	110 (L/t) [40]
First	Sugar cane	70–75 (L/t) [40]
First	Cassava	137–180 (L/t) [40]
First	Maize	400 (L/t) [40]
First	Rice	430 (L/t) [40]
First	Wheat	340 (L/t) [40]
Second	Corn stover	362–456 (L/t) [39,41]
Second	Wheat straw	406 (L/t) [39,41]
Second	Sugarcane bagasse	318–500 (L/t) [39,41]
Second	Switchgrass	392–457 (L/t) [39]
Second	Sorghum	268–380 (L/t) [39,41]
Second	Poplar	419–456 (L/t) [39]
Second	Agave	347 (L/t) [39]
Second	Agave Americana	347 (L/t) [39]
Second	Agave tequilana	401 (L/t) [39]
Second	Agave tequilana leaves	401 (L/t) [39]

Bioethanol yields

Bioethanol Generation	Biomass Source	Ethanol Yield (L/t)		
Second	Juice from <i>Agave americana</i> leaves	34 (L/t) [39]		
Second	Juice from <i>Agave tequilana</i> leaves	30 (L/t) [39]		
Second	Corn grain	470 (L/t) [39]		
Second	Rice straw	416 (L/t) [39]		
Second	Cotton gin trash	215 (L/t) [39]		
Second	Forest thinnings	308 (L/t) [39]		
Second	Hardwood sawdust	381 (L/t) [39]		
Second	Mixed paper	439 (L/t) [39]		
Third	Microalgae	167–501 (L/t) [42] *		
Third	Brown seaweeds (macroalgae)	12–1128 (L/t) [43] **		
Third	Seagrass (macroalgae)	747 (L/t) [43] **		
Third	Green seaweeds (macroalgae)	72–608 (L/t) [43] **		
Third	Red seaweeds (macroalgae)	12–595 (L/t) [43] **		

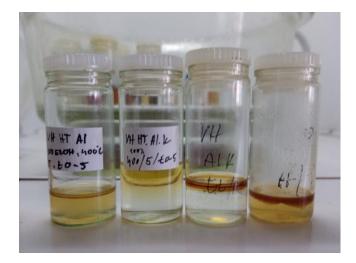

Multistep reaction scheme, both redox and acidobasically catalysed

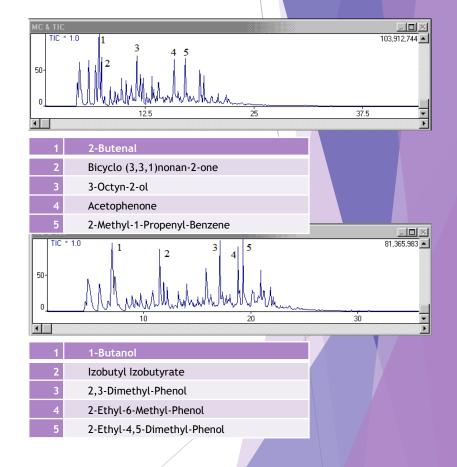



1 - mainly redox catalysed
 2- acidobasic catalysis

One-step vs. Two-step process

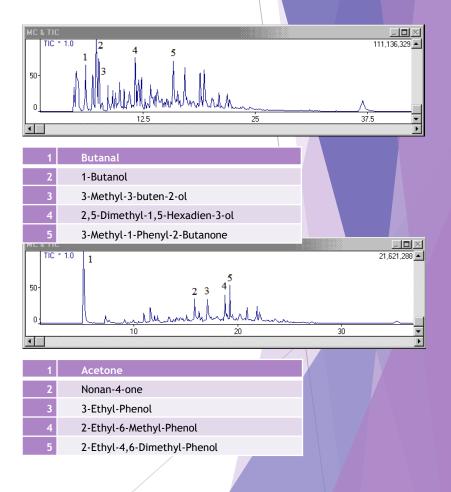
One-step

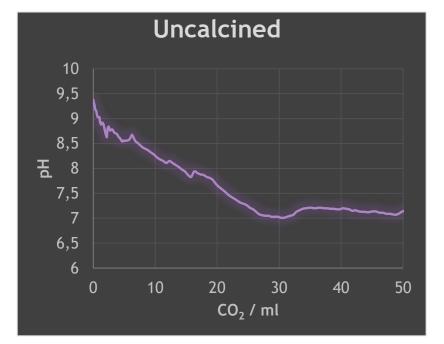


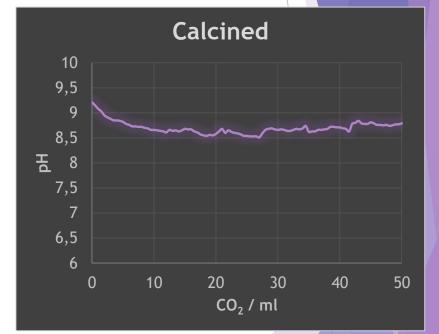


Mg-Al (excess Al) hydrotalcite, liquid products


- 1-step with ethanol-acetaldehyde raw
- 2-step with ethanol only

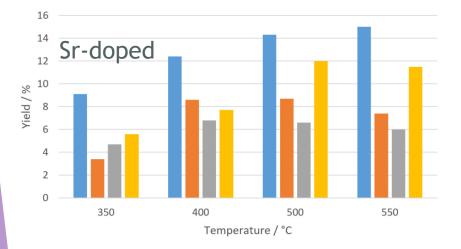


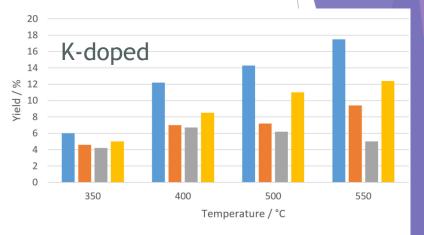

Mg-Al (excess Mg) hydrotalcite, liquid products


- 1-step with ethanol-acetaldehyde raw
- 2-step with ethanol only



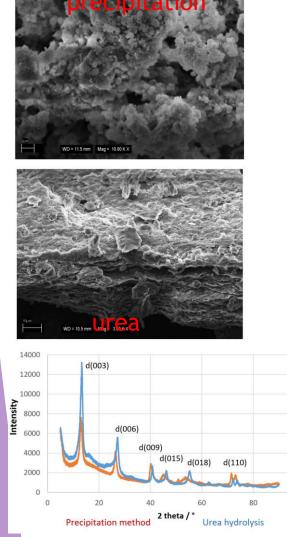
Estimation of the acidity Titration with aqueous solution of CO₂

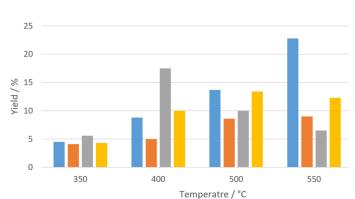




Basic magnesium silicate: Mg₄Si₆O₁₅(OH)₂·6H₂C - white clay mineral occurring in the nature

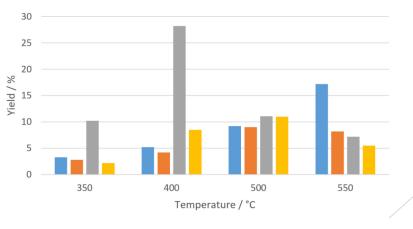
ethylene propylene 1,3-butadiene acetaldehyde




ethylene propylene 1,3-butadiene acetaldehyde

- The parent sepiolite is not expected to be acidic
- However, addition of strong bases improves the butadiene/ethylene ratio

Si-Al instead of Si-Mg


A layered double hydroxide: $Mg_6Al_2CO_3(OH)_{16} \cdot 4H_2O - hydrotalcite$. Depending on the particle size, its water suspension has a pH 7-9

Mg and Al nitrates precipitated by NaOH + Na₂CO₃

🗖 ethylene 🛛 🗧 propylene 🖉 1,3-butadiene 🖊 acetaldehyde

100

Mg and Al nitrates precipitated by urea hydrolysis at 100 °C

Conclusions

- The microstructure of the catalyst has a significant effect on the product distribution
- Suppressing the acidity of the catalyst (by K, Sr) leads to a more favorable ethylene/butadiene ratio
- It is possible to estimate the basicity of the catalyst by facile CO₂ titration
- The ethanol conversion can be led in a single-bed or double-bed reactor design
- The formation of phenolic compounds was observed, depending on the reactor design
- The lignocellulosic and other third-generation sources (as algae) of fermentable sugars are still underestimated

Thank you for your attention!

Acknowledgement

European Regional Development Fund (Interreg, SKHU/1902/4.1/001/Bioeconon/ www.skhu.eu

