Triglyceride hydroconversion over aluminasupported and phosphatized-aluminasupported Pd catalysts

> Anna Vikár Research Centre for Natural Sciences

> > Project meeting

"Joint chemical laboratory for the service of bioeconomy in the Slovak-Hungarian border

region" Interreg, SKHU/1902/4.1/001/Bioeconomy

Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary

22 September, 2021

www.ttk.hu/palyazatok/bioeconomy

Replacing fossil fuels

Fossil energy resourses

- Depleting resources
- Harmful effect on the environment

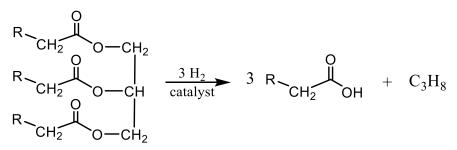
emission of greenhouse gas CO₂ contributes to global warming

Replacement by inexhaustible and renewable energy sources

- Solar, wind, water, geothermal energy
- Conversion of waste biomass, such as, non-edible and waste vegetable oils and animal fats to biofuel or fuel blending components

Diesel fuel production from biomass

Biodiesel:

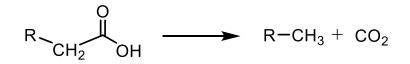

- transesterification of bio-oil triglycerides with methanol or ethanol
- fatty acid methyl or ethyl esters can be directly blended with conventional diesel fuels
- cannot fully replace conventional diesel oil (lower energy density, higher viscosity, moderate oxidation stability)

Biogasoil:

- catalytic hydrodeoxygenation (HDO) of bio-oil
- consist of mainly C_{15} – C_{18} n-alkanes, suitable as an alternative diesel fuel
- no need for the modification of internal combustion engines

Hydroconversion of triglycerides to paraffins

First step: hydrogenolysis (HYS) of the ester bonds



Next step: Converversion of carboxylic acid, not fully understood

1. hydrodecarbonylation: formation of CO

$$\mathsf{R}_{\mathsf{CH}_{2}} \overset{\mathsf{O}}{\longrightarrow} \mathsf{R}_{2} \overset{\mathsf{H}_{2}}{\longrightarrow} \mathsf{R}_{2} \mathsf{CH}_{3} + \mathsf{CO} + \mathsf{H}_{2}\mathsf{O}$$

2. hydrodecarboxylation: formation of CO_2

3. H_2 -reduction of oxygen: formation of H_2O via consecutive hydrogen addition and dehydration steps

$$R \xrightarrow{O}_{CH_2} OH \xrightarrow{3 H_2} R - CH_2 - CH_3 + 2 H_2O$$

Catalyst preparation and characterisation

 γ -Al₂O₃-1P, γ -Al₂O₃-2.5P, γ -Al₂O₃-5P supports

1, 2.5 and 5 wt.% P-content by impregnation with H_3PO_4 Calcination: 550 °C for 4h

 Pd/γ - Al_2O_3 , Pd/γ - Al_2O_3 -1P, Pd/γ - Al_2O_3 -2.5P, Pd/γ - Al_2O_3 -5P catalysts

0.5 wt.% Pd by wet impregnation

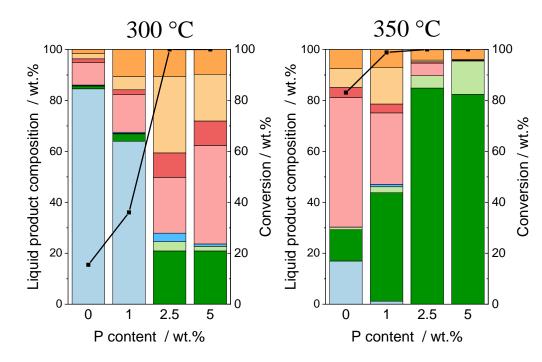
Calcination: 150 °C for 1h, then 350 °C for 4h

Tricaprylin (TC) as a model triglyceride

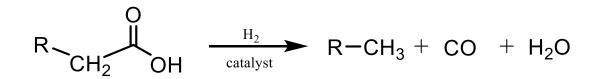
• Caprylic (octanoic acid): highest carboxylic acid, which is liquid at room temperature

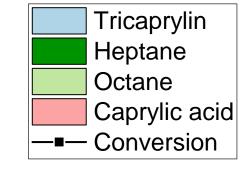
- High-pressure fixed-bed flow-through heterogeneous catalytic microreactor system
- Reaction conditions:

140 ml/min H_2 flow

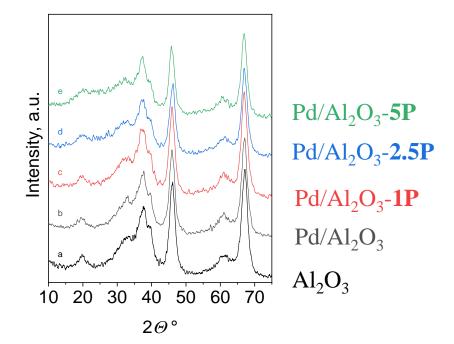

21 bar

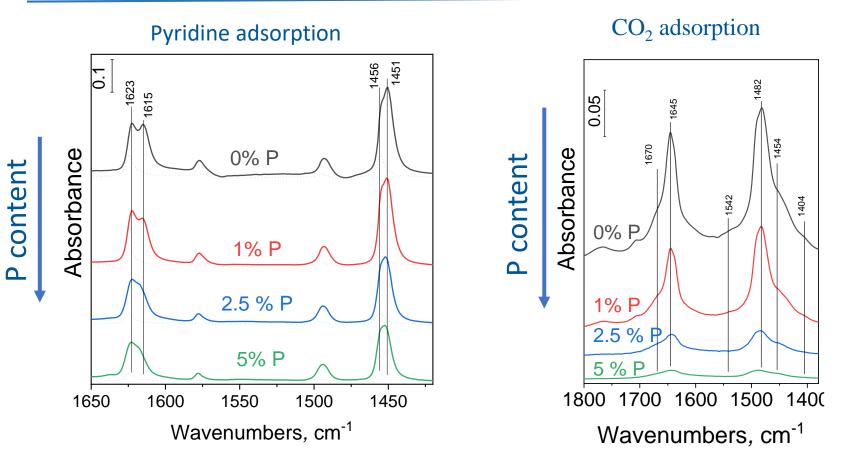
WHSV=4 $g_{tricaprylin} g_{catalyst}^{-1} h^{-1}$ 300 and 350 °C



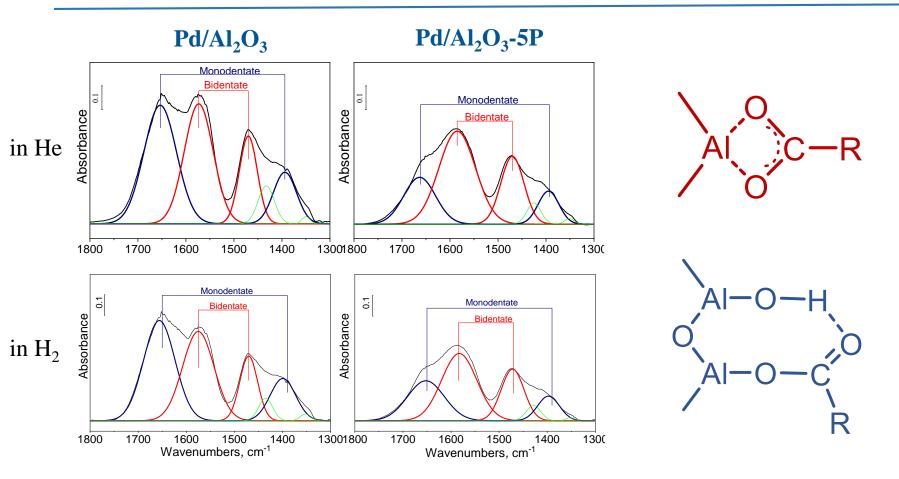

Product composition of the HDO of tricaprylin

- Pd/Al₂O₃ catalysts show high activity in hydrogenolysis of the ester bonds (1st step).
- Yield of paraffin products (heptane and octane) dramatically increased with the phosphorous content (nearly 100 % on Pd/Al₂O₃-5P).


- Change of catalyst structure
- Enhanced HDO (mainly hydrodecarbonylation) activity

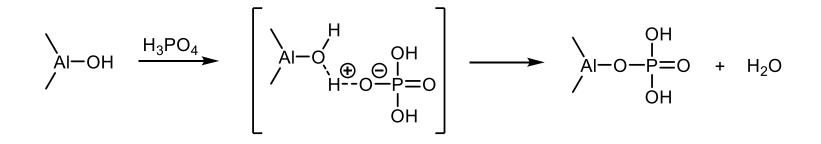

Catalyst structure

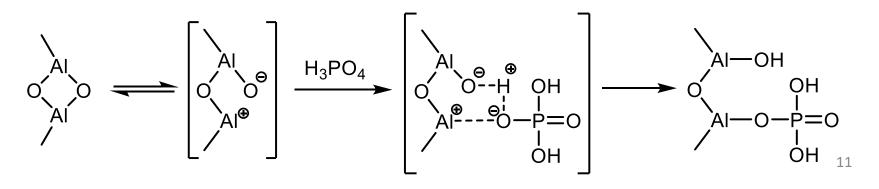
- No new crystalline phase could be detected
- The specific surface area decreased with increasing P-content
- Pd dispersion barely changed with the P-content of catalysts


Catalyst	Pd/Al ₂ O ₃	Pd/Al ₂ O ₃ -1P	Pd/Al ₂ O ₃ -2.5P	Pd/Al ₂ O ₃ -5P
Specific surface area, m ² g ⁻¹	212	183	167	132
Pd dispersion %	86	70	74	74

Acidic and basic properties of catalyst supports

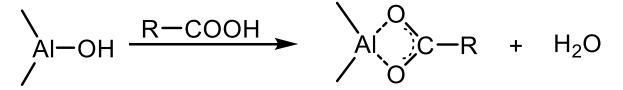
- The intensity of the characteristic absorption bands of the carbonate species as well as the coordinatively bound pyridine species are inversely proportional to the phosphate loading.
- The formation of surface phosphate decreased the concentration of both basic and Lewis acid sites.


Quasi-operando DRIFT spectroscopy of valeric acid hydroconversion

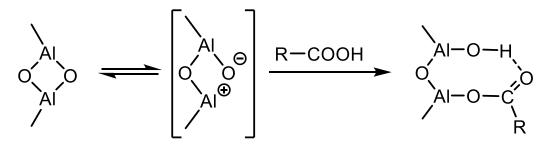

- Phosphatization significantly decrease the concentration of **monodentate** species.
- Bidentate carboxylate species are more reactive with H₂ than the monodentate species.
 Bidentate species, formed in reaction with less basic hydroxyls, are more ready to react.

Effect of surface phosphatization

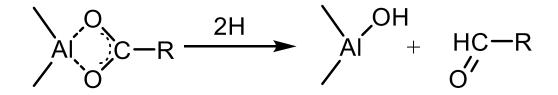
1. Consumes surface Al–OH groups



2. Reduces the concentration of Lewis acid sites and consequently the concentration of the Lewis acid– Lewis base pair sites (accompanied by the formation of non-reactive terminal Al^{IV}-OH groups)



Formation of carboxylate species on surface


Bidentate carboxylate species were formed via acid-base reaction between fatty acid and a surface hydroxyl groups.

Monodentate carboxylate species were formed over Lewis acid – Lewis base pair sites.

Bidentate species are more ready to react with hydrogen, producing aldehyde intermediate of HDO reaction.

Conclusions

- The Pd/γ - Al_2O_3 catalyst showed good activity in the HYS of the ester bonds to convert TC to caprylic acid, but poor activity in the consecutive HDO of the acid to paraffin.
- Surface phosphatization of the γ-alumina support significantly increased the HDO activity of the Pd catalyst.
- The HDO activity was enhanced due to:
 - the partial replacement of the basic Al–OH groups by weak acid P–OH groups: Bidentate carboxylates bonded to less basic surface sites were found to be more prone to HDO reaction.
 - the partial elimination of Lewis acid Lewis base pair sites on the surface of the support:

Less low-reactivity monodentate carboxylate binds to the surface.

Acknowledgement

Ferenc Lónyi

József Valyon

Alexander Kaszonyi

Magdolna Rosenbergerné Mihályi

Hanna Solt

Ágnes Szegedi

Attila Domján

Gyula Novodárszki

Róbert Barthos

Blanka Szabó

Miklós Fekete

Ágnes Wellischné Farkas

Financial Support

European Regional Development Fund (Interreg, SKHU/1902/4.1/001/Bioeconomy) www.skhu.eu

