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Replacing fossil fuels

Fossil energy resourses

• Depleting resources

• Harmful effect on the environment

emission of greenhouse gas CO2 contributes to global warming

Replacement by inexhaustible and renewable energy sources

• Solar, wind, water, geothermal energy

• Conversion of waste biomass, such as, non-edible and waste vegetable oils and animal 

fats to biofuel or fuel blending components
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Diesel fuel production from biomass

Biodiesel: 

• transesterification of bio-oil triglycerides with methanol or ethanol

• fatty acid methyl or ethyl esters – can be directly blended with conventional diesel fuels

• cannot fully replace conventional diesel oil (lower energy density, higher viscosity, 

moderate oxidation stability)

Biogasoil: 

• catalytic hydrodeoxygenation (HDO) of bio-oil

• consist of mainly C15–C18 n-alkanes,  suitable as an alternative diesel fuel

• no need for the modification of internal combustion engines
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Hydroconversion of triglycerides to paraffins
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First step: hydrogenolysis (HYS) of the ester bonds

Next step: Converversion of carboxylic acid, not fully understood

1. hydrodecarbonylation: formation of CO

2. hydrodecarboxylation: formation of CO2

3. H2-reduction of oxygen: formation of H2O via consecutive hydrogen addition and dehydration steps



Catalyst preparation and characterisation
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γ-Al2O3-1P, γ-Al2O3-2.5P, γ-Al2O3-5P supports

1, 2.5 and 5 wt.% P-content by impregnation with H3PO4

Calcination: 550 °C for 4h

Pd/γ-Al2O3 , Pd/γ-Al2O3-1P, Pd/γ-Al2O3-2.5P, Pd/γ-Al2O3-5P catalysts

0.5 wt.% Pd by wet impregnation

Calcination: 150 °C for 1h, then 350 °C for 4h 



Tricaprylin (TC) as a model triglyceride
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• Caprylic (octanoic acid): highest carboxylic acid, 

which is liquid at room temperature 

• High-pressure fixed-bed flow-through 

heterogeneous catalytic microreactor system

• Reaction conditions:

140 ml/min H2 flow

21 bar

WHSV=4 gtricaprylin gcatalyst
−1 h−1

300 and 350 °C



Product composition of the HDO of tricaprylin 

• Pd/Al2O3 catalysts show high

activity in hydrogenolysis of the

ester bonds (1st step).

• Yield of paraffin products (heptane

and octane) dramatically increased

with the phosphorous content (nearly

100 % on Pd/Al2O3-5P).

o Change of catalyst structure

o Enhanced HDO (mainly hydrodecarbonylation) activity
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Catalyst structure

• No new crystalline phase could be detected 

• The specific surface area decreased with 

increasing P-content

• Pd dispersion barely changed with the       

P-content of catalysts
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Specific surface area, m2 g-1 

212 183 167 132

Pd dispersion %
86 70 74 74



Acidic and basic properties of catalyst supports 

• The intensity of the characteristic absorption bands of the carbonate species as well as the 

coordinatively bound pyridine species are inversely proportional to the phosphate loading. 

• The formation of surface phosphate decreased the concentration of both basic and Lewis acid 

sites. 
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Quasi-operando DRIFT spectroscopy of 
valeric acid hydroconversion

Pd/Al2O3-5PPd/Al2O3

in H2

in He

• Phosphatization significantly decrease the concentration of monodentate species.

• Bidentate carboxylate species are more reactive with H2 than the monodentate species.

Bidentate species, formed in reaction with less basic hydroxyls, are more ready to react.
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2. Reduces the concentration of Lewis acid sites and consequently the concentration of 

the Lewis acid– Lewis base pair sites (accompanied by the formation of non-reactive 

terminal AlIV-OH groups)

Effect of surface phosphatization

1. Consumes surface Al–OH groups
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Formation of carboxylate species on surface

Bidentate carboxylate species were formed via acid-base reaction between fatty acid 

and a surface hydroxyl groups.

Monodentate carboxylate species were formed over Lewis acid – Lewis base pair sites.

Bidentate species are more ready to react with hydrogen, producing aldehyde intermediate 

of  HDO reaction.



Conclusions

• The Pd/-Al2O3 catalyst showed good activity in the HYS of the ester bonds to convert 

TC to caprylic acid, but poor activity in the consecutive HDO of the acid to paraffin.

• Surface phosphatization of the -alumina support significantly increased  the HDO 

activity of the Pd catalyst. 

• The HDO activity was enhanced due to:

1. the partial replacement of the basic Al–OH groups by weak acid P–OH groups:

Bidentate carboxylates bonded to less basic surface sites were found to be more 

prone to HDO reaction.

2. the partial elimination of Lewis acid – Lewis base pair sites on the surface of the 

support:

Less low-reactivity monodentate carboxylate binds to the surface.
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