Hydroconversion of lignin-monomer over alumina-supported Pd and Ni catalysts

Novodárszki Gyula, Mihályi Magdolna, Valyon József Research Centre for Natural Sciences

Project meeting "Joint chemical laboratory for the service of bioeconomy in the Slovak-Hungarian border region" Interreg, SKHU/1902/4.1/001/Bioeconomy

> Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary

> > 22 September, 2021

Building Partnership

www.ttk.hu/palyazatok/bioeconomy

Lignocellulose as source of carbon and energy

Lignin utilization

http://biomassmagazine.com/articles/14388/researchers-use-waste-lignin-to-make-carbon-fiber

Guaiacol-based chemicals

Rubber, plastic

Products from GUA could replace the materials of fossil origin

Reaction pathways of guiacol hydrodeoxygenation

ChemCatChem 4 (2012) 64; ACS Catal. 3 (2013) 1774; App. Cat. A 512 (2016) 93; App. Cat. B 270 (2020) 118890

Objectives:

- to convert GUA to value-added materials
- to elucidate the pathways of product formation
- > optimization of HDO catalysts

Catalyst preparation

Catalyst	Precursor	Support	
Pd/Al ₂ O ₃	$Pd(NH_3)_4(NO_3)_2$	γ–Al ₂ O ₃ (Alfa Aesar)	
Ni/Al ₂ O ₃	Ni(NO ₃) ₂)·6H ₂ O		
$Pd/Al_2O_3(P)$	$Pd(NH_3)_4(NO_3)_2$	$\gamma - Al_2O_3$ (Alfa Aesar)	
$Ni/Al_2O_3(P)$	Ni (NO ₃) ₂)·6H ₂ O	dried and calcined (550 °C, 4h)	

> Catalytic experiments were carried out in a continuous flow-through fixed-bed microreactor

Catalyst characterization

Metal and P content; Specific surface area (SSA)

Supports and catalysts	Metal content wt%	P content wt%	SSA m²/g
Al ₂ O ₃	-	-	196
Pd/Al ₂ O ₃	0.47	-	194
Ni/Al ₂ O ₃	5.21	-	192
$Al_2O_3(P)$	-	4.85	167
$Pd/Al_2O_3(P)$	0.49	4.87	163
$Ni/Al_2O_3(P)$	5.06	4.82	165

X-ray diffraction (XRD)

- Metal impregnation has no influence on SSA
- Impregnation of Al₂O₃ support with H₃PO₄ solution reduces SSA

- > Al_2O_3 is the only detectable phase
- NiO and PdO crystallites are well dispersed on the Al₂O₃ surface

Surface structure of phosphated γ-alumina

Catalysts acidity and reducibility

- On the Al₂O₃ (P) support the intensity of bands at 1450, 1455 cm⁻¹ and 1615, 1624 cm⁻¹ is lower lower Lewis acidity
- Phosphorus modification reduces the Lewis acidity of the alumina support

Temperature-programmed reduction (H₂-TPR)

- Pd can be easily reduced around 100 °C (not shown in the figure)
- The degree of reduction at 450 °C:
 -Ni/Al₂O₃ ~ 4.5 % of Ni (H/Ni=0.09)
 -Ni/Al₂O₃ (P) ~ 0.5% (H/Ni=0.01)
 *Ni/Al₂O₃ (P) (550) ~ 3.5% (H/Ni=0.07)

Activity of Al_2O_3 and Al_2O_3 (P) supports

- Demethylation (DME) and transalkylation (AL) are the main reactions
- CAT derivatives are the main products

- Demethoxylation (DMO) and dehydroxylation (DHO) also takes place
- > PHE derivatives were also formed

Comparison of catalysts activity

- Cyclohexanones and cycloalkanes are the main products on Pd/Al₂O₃
- O-free compounds were mainly formed on Ni/Al₂O₃
- > Aromatics (phenols, catechols) were formed on Ni/Al₂O₃ (P) and Ni/Al₂O₃ (P)(550)

Effect of temperature

- > The yield of phenols increases with temperature
- 1-Methoxycyclohexane and 2-methoxycyclohexanone were also formed (not shown)

- The yield of aromatics (phenols, catechols) increases with temperature
- 1,2-Dimethoxybenzene was also formed at lower temperature (not shown)

Effect of temperature

- ➢ At 225 °C cyclohexanols were the main products
- ➢ At 250 °C high yield and selectivity to CHA
- With temperature the yield of benzenes increased as dehydrogenation is accelerated

The yield of phenols increases with temperature

Effect of space time and total pressure on Ni/Al₂O₃

225 °C, 10 bar, H₂/GUA=20

300 °C, 1 g_{cat}/g_{GUA} *h , H₂/GUA=20

- At lower space time phenol and benzol intermediates appear in the product mixture
- GUA hydrodeoxygenation to CHL and CHA proceeds through PHE and BEN intermediates

- At lower pressure the hydrogenation activity is lower
- With total pressure more hydrogenated products were formed

Conclusions

- ✓ The sequential steps of GUA hydroconversion can be controlled by using noble and non-noble metal and modifying the alumina support.
- ✓ Pd/Al_2O_3 catalyst shows high activity and selectivity in GUA hydrodeoxygenation to cyclohexanones.
- ✓ Ni/Al₂O₃ catalyzed hydroconverzion of GUA to O-free compounds like cyclohexane.
- ✓ Pd and Ni supported on phosphorus-modified alumina behave similarly, they are selective to aromatics.
- ✓ Pd/Al₂O₃(P) and Ni/Al₂O₃(P) catalysts remain active in demethylation and demethoxylation, but lose their ability to hydrogenate the aromatic ring. (low hydrogenation activity, and/or weaker interaction between substrate molecules and phosphated support)

Thank you for your kind attention!

Acknowledgement

• European Regional Development Fund (Interreg, SKHU/1902/4.1/001/Bioeconomy) www.skhu.eu

www.ttk.hu/palyazatok/bioeconomy