Pyrolytic analysis of lignocellulose from agricultural and forestall byproducts

Lívia Izsák Faculty of Chemical and Food Technology Slovak University of Technology in Bratislava

Project meeting "Joint chemical laboratory for the service of bioeconomy in the Slovak-Hungarian border region"

Interreg, SKHU/1902/4.1/001/Bioeconomy

Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary

22 September, 2021

Aims

Conversion of renewable raw materials, especially components of lignocellulose found in border region of Slovakia and Hungary, into chemicals and materials with high added value as components of the circular economy. **Fast pyrolysis of lignocellulosic** biomass in a microreactor Circular connected with GC-MS systeme. Economy

Agricultural and forestall byproducts

- peas
- grapes
- barley
- invasive plants
- maize
- poppy
- mustard

- oats
- wheat
- rye
- rape
- sunflower
- soya
- reed

Biobank

JUZA Unima E et Jua	Suza Liona R.G. Su	SUZA Wastenates	H. Or. Asia	U. 01, 200
SUZA Septem Scillage	SUZA Laparti	fL 07, Jose	Lapla IL M. Sou	Búža Tairatalu II. or. tau
3/24	14 ol 249	802.4. 11. 07. 2019	BUZA Fydrighda H (47.200	3 U.Z.A Kronisymiä 18. or. Jaar
81220	Furdit. Bior sup	búza Pilat II. m. teg	Búza Jusekisti Njakisty H. Or Sau	Bičza Halašna Hotašna
3UZA Navi	AUZA			
42 (0) Roly	The sum	SU2A Notaginantia 11 cm tau	BÚZA Tando LA CO Long	BUEA Phathanichta Butr 2019
Uthdae 22 m loo	Ndtined 22 07 Jaco	BUZA Raga 33. cr. Jace	31) ZA Shinai paijisiy D. or. Log	BUZA Talabuhay Ikor Lu
dicta davaray 21 m ann	AUZA Galas 33 19 Inte	AUZA Rozeá poží a Do se Zoo	Biza Hickand Bior.sd	BUCA Bringer Ant
Auta Öranstet 21.00 Lans	Bulan Balan Balan Balan Balan Balan	BUCA Babaspalak Baraspalak	BUZA Bakar Bakar	Búza Cropiniste
			· · ·	LL:09.109
		LEICE	MPAG	
	HUJTA'S, Lajba	Larca	EEPCE *	
No. of Concession, Name	17.07.2015 HUSTAR	Anderson V or sug	U.07. 30	LEFCE Gu D.a. Lu
List sin	Junitulii: W.O. 240	Espurit (Lot. 1640	Brea. Drea. Dres. Jour	REFIE Maring 13-07, Jose
Catava. To achor	HUSTATE Expension G.OF. 2549	REFGE TURAL II. UT. Law	REFCF WE-Samat LL 07: Lot	REPLE Faller 11 m. Ross

800 ^{sample}s PSENICA Brzotin 02.07. 2013 PŠENICA Veľký Lepši 08.07.2019 PŠENICA Jemandice-Rom Ol. OF. 2019 PSENICA Rozmara PŠENICA Čiersa Lúka (ust Motorist) 02.07. 2019 01.07.2013 PSENICA Halie" 08.07. 2019 PŠENICA Ložnana · Zvýva OL. OT. Jos PŠENICA Zemplinska Tepli PSENICA 08.07. 2018 Kalna PŠENICA Demandice I OL 07. LO19 04.07.2015 PSENICA Cierna Lika 02.07.2013 PSENICA Novorad DS. 07. Lass PSEMICA Buzica 0.9. 07. 2019 PŠENICA Nižný Žipor 09.07.2013 PYENICA Egrei Od. or. Int

Map of collection places

Stem of the plant

Stem of the plant

Hemicellulose

β-D-manóza

pentoses:

α-L-arabinóza

α-L-ramnóza

OH

β-D-fruktóza

uronic acids:

β-D-xylóza

- Short heteropolysaccharide chains
- 20-25% in plants
- Pyrolyses
 products: furan derivatives,
 aldehydes and anhydrosacchar
 ides
- Most abundent compound:

Lignin

2, coniferyl (3-methoxy-4hydroxycinnamyl) 3, synapil (3,5-dimethoxy-4-hydroxycinn-

Lignocellulose pyrolysis

Mechanism of fast pyrolysis on cellubiose

Effect of heating rate and temperature on the fast pyrolysis process

- The fast pyrolysis process requires rapid heating and subsequent cooling of the primary vapours to minimise the extent of secondary reactions.
- Secondary reactions are undesirable and have a negative effect on product quality.
 Slow heating results in higher yields of biochar.
- At lower temperatures, adverse effects such as incomplete decomposition of the biomass can also occur, leading to a higher proportion of solids in biochar.
- Increasing the pyrolysis temperature, typically to 400-550°C, increases the yield of liquid products, while other factors also influence its formation.
- Pyrolysis above 550°C leads to secondary reactions causing vapour decomposition and condensed products (compounds) become more dominant.

Equipment

GC-MS-QP2010 ULTRA

Conditions

Column

- Type: Ultra ALLOY-5
- Length: 30 m
- Diameter: 0,25 mm
- Thickness of the anchored phase: 0,25 μm
- Carrier gas flow: 0,96 ml/ min
- Pressure: 50 kPa
- Split ratio: 20,0

Carrier gas: Helium

- Total flow: 23 ml/ min

Injection mode: Splitless

Analysis time: 60 min

Temperature profile of the column:

GC injection temperature: 250 °C

Ion source temperature: 200 °C

Equipment AUTO-SHOT SAMPLER (AS-1020E)

AS-1020E

AS-1020F

II II II II

H H H H

II II III

FRONTIER LAB

Continuous analysis of up to \bigstar 48 samples. Continuously or randomly using various analysis modes: Single-shot analysis, Doubleshot analysis, Evolved gas 🗙 analysis, Heartcut EGA analysis The system operation combined with optional accessories can7be automated

Procedure for evaluating measured data

Sample of reed

m/z

Pyrolysis products

Sample of straw

19

Pyrolysis products of straw

Gas chromatograph record of pyrolysis products of the glossy surface of untreated straw pyrolysed at 500°C.

Retention time Compliance [%] Substance [min] 2,81 94 Acetic acid 2,95 86 Methyl acetate 2,97 1-hydroxy-2-propanone 86 1-hydroxy-2-butanone acetate 4,49 90 4,88 Methylpentanal 87 2-oxo-propanoic acid methyl ester 5,09 91 Furfural 6,14 85 6,25 89 Cyclopenten-3-one 2(5H)-furanone 8,81 89 3-methylcyclopentanone 9,08 91 3-methyl-1,2-cyclopentadienone 11,49 94 Methoxy-phenol (guaiacol) 12,56 94 14,44 2-methoxy-p-cresol 94 Benzofuran 14,93 91 90 2-methoxy-4-vinylphenol 16,45 2,6-dimethoxy-phenol syringol 17,00 88 20 19,55 Levoglucosan 82

Characteristic products of pyrolysis of untreated straw:

Pyrolysis products of corn

Gas chromatograph record of pyrolysis products of the glossy surface of untreated corn pyrolysed at 500 °C

Characteristic products of pyrolysis of untreated corn:

-	Retention time [min]	Compliance [%]	Substance
	2,81	80	Acetic acid
Ċ	3,05	8	1-hydroxy-2-propanone
1	4,57	91	1-hydroxy-2-butanone
1.	4,93	87	Methylpentanal
-	6,21	80	Furfural
- Contraction	6,30	80	Cyclopenten-3-one
S.H.L	9,13	87	1,2-cyclopentadienone
1	10,47	96	Phenol
	11,52	91	3-methyl-1,2-cyclopentadienone
	12,62	95	Methoxy-phenol (guaiacol)
	13,11	85	Derivative of Pentanal
	14,98	91	Benzofuran
	16,47	91	2-methoxy-4-vinylphenol
	17,05	88	Syringol 21

Pyrolysis products of corn and straw

Comparison of pyrolysis products of straw and maize obtained at 500°C

Pyrolysis products of sunflower

Gas chromatograph record of pyrolysis products of the glossy surface of untreated sunflower pyrolysed at 500°C.

Pyrolysis products of wheat

Gas chromatograph record of the pyrolysis products of the glossy surface of untreated winter wheat pyrolysed at 500 °C

Pyrolysis products of barley

Gas chromatograph record of pyrolysis products of the glossy surface of untreated barley pyrolysed at 500 °C

Characteristic products of pyrolysis of untreated barley:

Retention time [min]	Compliance [%]	Substance
2,68	86	2-oxo-propanoic acid
2,98	92	1-hydroxy-2-propanone
4,50	88	1-hydroxy-2-butanone
4,82	83	methylpentanal
5,09	89	2-oxo-propanoic acid methyl ester
6,13	89	furfural
8,77	93	2(5H)-furanone
9,13	87	cyklohexanone
11,49	94	3-methyl-1,2-cyclopentadienone
12,53	92	methoxy-phenol (guaiacol)
14,40	89	2-methoxy-p-cresol
14,97	84	benzofuran
16,43	91	2-methoxy-4-vinylphenol
19,2 - 20,13	90	levoglucosan 25

Pyrolysis products of reed and vine

Gas chromatograph record of pyrolysis products of the glossy surface of untreated reed pyrolysed at 500 °C

Comparison of gas chromatograph recordings of pyrolysis products of the glossy surface of reed (pink colour) and vine (black colour) pyrolysed at 500°C

Effect of temperature on the composition of pyrolysis products

Dependence of pyrolysis solid residue (coke) formation on pyrolysis temperature

Effect of temperature on the composition of pyrolysis products

28

Effect of temperature on the composition of pyrolysis products

Part of the chromatogram showing the peaks of furfural and cyclopentenone as a function of temperature

Influence of plant morphology on the composition of pyrolysis products (corn)

Glossy surface of stem (black); interior (pink); outer part of stem (blue) and leaf

Retention time [min]	Part of the plant	Substance
2,6	leaf	Acetic acid
7,33	leaf, outer part of stem	Acetol acetate
10,44	leaf, outer part of stem	Phenol
11,45	leaf, outer part of steem	3-methyl-1,2-cyclopentadienone
13,16	glossy surface of stem, interior	Dialkylpentanal

Influence of plant morphology on the composition of pyrolysis products (corn)

Glossy surface of stem (black); interior (pink); outer part of stem (blue) and leaf (green)

Peak height [-]

Retention time [min]

Retention time [min]	Part of the plant	Substance
13,73	glossy surface of stem, interior	2,6-dimethylphenol
14,9	glossy surface of stem, interior	benzofuran
16,16	leaf	2-deoxy-D-galactose
17,1	glossy surface of stem, interior	syringol
19,5	leaf, outer part of stem	levoglucosane

Influence of plant morphology on the composition of pyrolysis products (wine)

Glossy surface of stem (black); interior (pink); outer part of stem (blue) and leaf (green)

Retention time [min]

Influence of plant morphology on the composition of pyrolysis products (wheat)

Glossy surface of stem (black); interior (pink); outer part of stem (blue) and leaf

Influence of plant morphology on the composition of pyrolysis products (sunflower)

Glossy surface of stem (black); interior (pink); outer part of stem (blue) and leaf

Retention time [min]

Conclusion

- Comparison of the composition of pyrolysis products of agricultural residues: practically identical products, the difference is in the amount and presence of some compounds characteristic of the plant. Residues of agrochemicals are also visible.
- Different morphological parts of the plants supported the formation of different amounts of pyrolysis products, specific also for the cover and the grains themselves.
- The temperature of pyrolysis: up to 300°C only volatile components are separated; at higher temperatures up to 500°C the largest amount of liquid products are formed by retrocondensation reactions; above 550°C bond cleavage - cracking occurs, consecutive reactions of primary decomposition products takes place

Plans

Complete analyzes (new samples)
Evaluate chromatograms
Compare by plant and place of origin
Repeat in the presence of catalysts

Thank you for your attention!

Acknowledgement

European Regional Development Fund (Interreg, SKHU/1902/4.1/001/Bioeconomy) www.skhu.eu

Building Partnership