Transesterification of alternative sources over mixed oxides to produce biodiesel

Ing. Miroslava Mališová Slovak University of Technology in Bratislava

Project meeting "Joint chemical laboratory for the service of bioeconomy in the Slovak-Hungarian border region" Interreg, SKHU/1902/4.1/001/Bioeconomy

> Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary

> > 22 September, 2021

Transesterification of alternative sources over mixed oxides to produce biodiesel

Ing. Miroslava Mališová Slovak University of Technology in Bratislava

3-

Saponifiable fraction (98% oil)

Triglycerids

Triacylglycerol - consists of glycerol esterified with fatty acids R1, R2, and R3 - fatty acid chains

Partial glycerides

Hydrolysis of triglycerides leads to the formation of diacylglycerides (diacylglycerol) and monoglycerides (acylglycerol).

R^{1} O O OH O R^{2} O

• Free fatty acids

Naturally occurring fatty acids - carboxylic acids with a straight chain and an even number of carbons

Other ingredients - vegetable waxes and phosphates

Vegetable oils

Unsaponifiable fraction (2%)

• Tococerols a tocotrienols

natural antioxidants that protect mono- and polyunsaturated fatty acids from oxidation.

Other ingredients - phytosterols, substances that add color to oil

Most common used vegetable oils

Camelina sativa

"Gold of pleasure"

False flax"

Cultivation

- Annual summer crop / winter semi - annual crop
- Relatively drought resistant
- Possibility of growing on contaminated soils

 It is possible to obtain 30 to 40% of oil from the seeds of camelina

- 32 46% of unsaturated fatty acids
- High content of natural antioxidants tocopherols

Oil type	Tocoferol content (mg/kg)	lodine number (mgl2/g oil)	C14: 0	C16:0	C18:0	C18:1	C18:2	C18:3	C20:0
Camelina oil	700 – 1200	150-153	0.0	6.0	2.9	18.4	19.4	34.2	1.4
Palm oil	650	50-55	1.0	44.4	4.1	39.4	10.2	0.3	0.3
Soya oil	960	120-143	0.1	11.0	4.0	23.4	53.2	7.8	0.3
Sunflower oil	550	110143	6.1	3.9	3.9	42.6	46.4	1.0	0.0
Olive oil	220	79-88	0.0	13.7	2.5	71.1	10.0	0.6	0.9
Rapeseed oil	850	94-120	0.2	3.5	0.9	64.4	22.3	8.2	0.0

Transesterication

Transesterification (alcoholysis) - reaction of triglycerides with alcohol in the presence of a catalyst to form alkyl esters of fatty acids and glycerol

Catalysts Homogeneous Heterogeneous Parameters affecting transesterification: Alcohol Reaction time Temperature Catalyst Oil composition Pressure Homogeneous transesterification

Benefits

- Low reaction temperature,
- Atmospheric pressure
- High conversion in minimal time
- Good availability of catalysts

Disadvantages

- Challenging separation
- Need to wash out catalyst
- The catalyst cannot be reused
- Two-step process with high FFA content

Heterogeneous transesterification

Benefits

- Possibility of catalyst regeneration and reuse
- Easy separation
- Also for oils with a high content of FFA and water
- No soaps are

Disadvantages

- Longer reaction time required to achieve conversion
- Higher reaction temperatures

Hydrotalcite

Layered double hydroxides (LDH)

Layered structure:

<u>Cationic lyer</u> M^{2+ :} Cu, Ni, Mn, Ca, alebo Zn M^{3+ :} Al, Fe,Cr

Interlayer space Possible to built in:

- Inorganic anions Cl^{-,} F⁻, Br⁻, (SO₄)²⁻, (CO₃)²⁻, (OH⁻), (HCO₃)⁻ and others
- Heteropolyacids
- $(PMo_{12}O_{40})^{3-}$, $(PW_{12}O_{40})^{3-}$ and others
- Organic acids

Octaedric brucite unit

Hydrotalcite layered structure

 $[M_{1-x}^{2+}M_{x}^{3+}(OH)_{2}][A_{x/n}^{n-}mH_{2}O]$

Hydrotalcite preparation

Co-precipitation

- Most common used method
- Precipitation from cation and anion solutions

Hydrothermal synthesis

- Better crystallinity
- Treatment in the presence of water vapor, at a temperature below the hydrotalcite scale

Urea method

- High crystallinity and stability of crystals
- The addition of urea leads to agglomeration of the particles

Sol - gel synthesis

Preparation of amorphous gel and subsequent rehydration at low temperatures

Rehydratation

Reintroduction of anions into mixed oxides prepared by calcination

Mixed oxides

Amorphous structure Depending on the number of metals, they can be binary ... quaternary, etc..

Properties of mixed oxides usable in catalysis Large specific surface area compared to hydrotalcites Memory effect

Transition of hydroalcite structure to mixed oxide structure

Spinelová štrukura

• batch reactor with intense stirring

Heterogeneous Transesterification

140 C, 7 hours, 30:1 (Me/Oil) 3 wt.% of catalyst Methyl esters (Biodiesel)

Catalyst and biodiesel characterisation

- Catalyst characterisation
 - ICP-EOS
 - FTIR (Infrared spectroscopy with fourier transformation)
 - TG/DTG (Termogravimetry / derivated termogravimetry)
 - TPD

- TPD-CO₂ (Teperature programed desorption of CO_2)
- TPDA (Teperature programed desorption of amonia)
- XRD
- Textural properties (specific surface area, pore volume, pore diameter)
- Determination of FAME content (EN14103 GC)

Obtained results

	Mixed oxides	S _{вет} , <i>m²/g</i>	V _p , cm³/g	D _p , nm
Differences between specific surface areas	Ni/MO	262	0.632	5-19
Significant impact of added	Mn/MO	220	0.783	19-43
metal into hydrotalcite / mixed	Ca/MO	147	0.428	13-47
	Co/MO	180	0.710	16-39
	Fe/MO	200	0.818	16-44

•

•

Mixed	Low t.a.*,	Middle t.a.*,	High t.a.*,	
oxides	area %	area %	area %	
Ni/MO	37	39	24	
Mn/MO	35	33	31	
Ca/MO	29	36	35	
Co/MO	26	24	50	
Fe/MO	39	39	23	

Mixed oxides	Total basicity, mmol CO ₂ /g	Acidity, mmol/g
Ni/MO	0.541	0.56
Mn/MO	0.406	0.66
Ca/MO	0.317	0.62
Co/MO	0.292	0.75
Fe/MO	0.497	0.41

Transesterification

Catalyst properties in relation with methyl ester content

Mixed	Middle	ME	Acidity,	
oxides	area %	wt.%	mmoi/y	
Fe/MO	39 1	96.6 1	0.41	
Ni/MO	39	96.7	0.56	
Ca/MO	36	92.2	0.62	
Mn/MO	33	87.1	0.66	
Co/MO	24	77.1	0.75 🔶	

Acknowledgement

European Regional Development Fund (Interreg, SKHU/1902/4.1/001/Bioeconomy) www.skhu.eu

Building Partnership